Geodesic Distance for Right Invariant Sobolev Metrics of Fractional Order on the Diffeomorphism Group

نویسندگان

  • MARTIN BAUER
  • MARTINS BRUVERIS
  • PHILIPP HARMS
  • PETER W. MICHOR
چکیده

We study Sobolev-type metrics of fractional order on the group of compactly supported diffeomorphisms Diffc(M), where M is a Riemannian manifold of bounded geometry. We prove that the geodesic distance, induced by the Riemannian metric, vanishes if the order s satisfies 0 ≤ s < 1 2 . For M 6= R we show the vanishing of the geodesic distance also for s = 1 2 , and for dim(M) = 1 we show that the distance is positive for 1 2 < s. For M = Rn we derive and discuss the geodesic equations for these metrics. It is a known fact that for specific values of s one recovers well known PDEs of hydrodynamics: Burgers’ equation for s = 0, the modified Constantin-LaxMajda equation for s = 1 2 or the Camassa-Holm equation for s = 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesic Distance for Right Invariant Sobolev Metrics of Fractional Order on the Diffeomorphism Group. Ii

The geodesic distance vanishes on the group Diffc(M) of compactly supported diffeomorphisms of a Riemannian manifold M of bounded geometry, for the right invariant weak Riemannian metric which is induced by the Sobolev metric Hs of order 0 ≤ s < 1 2 on the Lie algebra Xc(M) of vector fields with compact support.

متن کامل

Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle

In this paper, we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphism group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...

متن کامل

Right-invariant Sobolev Metrics of Fractional Order on the Diffeomorphisms Group of the Circle

In this paper we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphisms group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for th...

متن کامل

On geodesic exponential maps of the Virasoro group

We study the geodesic exponential maps corresponding to Sobolev type right-invariant (weak) Riemannian metrics μ (k ≥ 0) on the Virasoro group and show that for k ≥ 2, but not for k = 0, 1, each of them defines a smooth Fréchet chart of the identity. For k = 0 and k = 1 the corresponding geodesic flows are related to the Korteweg de Vries and Camassa Holm equations. In particular, the geodesic ...

متن کامل

Geodesic Flow on the Diffeomorphism Group of the Circle

We show that certain right-invariant metrics endow the infinite-dimensional Lie group of all smooth orientation-preserving diffeomorphisms of the circle with a Riemannian structure. The study of the Riemannian exponential map allows us to prove infinite-dimensional counterparts of results from classical Riemannian geometry: the Riemannian exponential map is a smooth local diffeomorphism and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011